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ABSTRACT:

Ensemble modeling has become a critical approach in modern
machine learning, substantially enhancing predictive accuracy by
aggregating the strengths of multiple classifiers while mitigating
individual model biases and variance. This study evaluates the
effectiveness of a stacking ensemble framework that integrates a
Support Vector Machine (SVM) with a Radial Basis Function
(RBF) kernel and a Multi-Layer Perceptron (MLP)-based Neural
Network (NN). These base models, developed using distinct
learning  paradigms, exhibit complementary generalization
capabilities and are combined into a unified meta-classifier
through stacking techniques. The methodology was applied to
Fisher’s Iris dataset, a well-established multivariate benchmark
widely used in pattern recognition research. The classification
pipeline comprised two main phases: the independent development
of the base models and the construction of the stacked ensemble.
The dataset was partitioned into 80% for training and 20% for
testing to evaluate performance consistency. Experimental results
indicate that the SVM model achieved a training accuracy of
99.17%, a Matthews Correlation Coefficient (MCC) of 0.9876, and
an Fl-score of 0.9917. The MLP-based NN attained a training
accuracy of 98.33%, an MCC of 0.9754, and an Fl-score of
0.9833. Notably, the stacked ensemble model outperformed both
base classifiers, achieving perfect test set metrics with 100%
accuracy, MCC, and Fl-score. These findings confirm the
robustness and superior predictive capacity of the stacking
ensemble approach over individual models and underscore its
potential for constructing high-performing, reliable classification
systems
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1. INTRODUCTION

Ensemble learning has become a cornerstone technique in machine learning (ML), renowned for its
capacity to address complex computational challenges by aggregating predictions from multiple base models,
often referred to as weak learners. One prominent example is the Random Forest (RF) algorithm, which
leverages an ensemble of decision trees to improve both accuracy and generalizability. The central objective of
ensemble learning is to enhance predictive performance across various domains, including classification,
regression, and function approximation, by exploiting the complementary strengths of diverse learning
algorithms [1].

Among ensemble strategies, stacking stands out for its superior predictive capability. Widely employed in
ML and data science competitions, stacking models often surpass the performance of individual classifiers. This
is achieved by training a set of heterogeneous base learners on the same dataset and subsequently using their
outputs as input features for a higher-level meta-learner [2]. The meta-learner synthesizes these predictions to
produce a final, more accurate outcome. Unlike conventional ML models that map inputs directly to outputs,
stacking models operate at a meta-level, capturing the relationships among base learners’ predictions and the
true labels [3, 4].

Ensemble classifiers can be constructed using several well-established techniques. The most commonly
adopted methods include: (a) employing varied subsets of the training data with custom learning schemes; (b)
altering initialization parameters or training procedures; and (c) integrating fundamentally different learning
algorithms [5]. The superiority of ensemble methods over single classifiers is rooted in their ability to address
representational, statistical, and computational limitations, particularly in scenarios where training data is
insufficient relative to the hypothesis space [6].

Despite their demonstrated potential, ensemble approaches still warrant further investigation to optimize
their architecture and maximize performance. In this context, the present study introduces a novel Stacking
Ensemble Learning (SEL) framework that combines a Support Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel and a Multi-Layer Perceptron (MLP) neural network. This hybrid model is designed to
harness the complementary capabilities of SVM and MLP, thereby enhancing classification effectiveness across
diverse datasets [7].

The proposed SEL framework is evaluated on multiple benchmark datasets, including Fisher’s Iris dataset.
Comparative analyses reveal that it consistently outperforms traditional ensemble techniques in terms of
classification accuracy. To further validate its effectiveness, cross-model evaluation was conducted to compare
the performance of different classifiers such as neural networks and SVMs, using consistent training and
validation splits [8, 9].

Artificial Neural Networks (ANNS), inspired by the architecture of the human brain, are known for their
adaptability, error resilience, and ability to learn from experience. Structurally, ANNs comprise interconnected
layers of nodes (neurons), where weighted connections adjust iteratively during training to minimize prediction
error. This makes them highly suitable for capturing complex, non-linear relationships in data [10]. Ensemble
approaches, particularly those employing hybrid stacking strategies, have proven effective in tasks such as data
fusion, feature selection, and high-dimensional classification [11].

1.1. Motivation for the Proposed SEL Framework
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To overcome limitations associated with conventional ensemble models, this study proposes a robust
Stacking Ensemble Learning (SEL) classification framework incorporating the following innovations:

e Class-Specific Model Weighting: The framework dynamically assigns weights to base learners
according to their performance on specific classes, enhancing accuracy for imbalanced or minority class
distributions.

o Hybrid Integration of Diverse Classifiers: By combining SVMs with RBF kernels and MLP neural
networks, the framework leverages their complementary strengths to improve generalization and
robustness.

e Robust Meta-Classifier Construction: Stacking heterogeneous model predictions enables the
construction of a meta-classifier capable of outperforming any single constituent learner.

e Improved Computational Efficiency: The system prioritizes high-performing models during
prediction, reducing redundancy and enhancing scalability for large or complex datasets.

e Validated Performance Gains: Experimental results on benchmark datasets, including the Iris dataset,
confirm that the SEL framework yields higher classification accuracy, affirming the efficacy of hybrid
stacking strategies.

In summary, the proposed SEL framework offers a comprehensive and adaptive solution to the challenges
of classification tasks. By integrating heterogeneous learners, dynamically weighting their contributions, and
optimizing meta-level prediction, the framework demonstrates both superior accuracy and computational
efficiency across a variety of benchmark datasets.

The structure of this paper is organized as follows: Section 2 provides a review of recent developments in
the field. Section 3 outlines the proposed methodology, while Section 4 details the experimental results. Lastly,
Section 5 offers the concluding remarks.

2. RELATED WORK

Zaidi et al. (2025) [30] introduced Heart Ensemble Net, a hybrid ensemble model utilizing both stacking
and voting methods to enhance cardiovascular disease (CVD) prediction. Trained on a dataset of 70,000
patients, it outperformed six traditional classifiers SVM, GB, DT, LR, KNN, and RF, and a hybrid RF-linear
model (HRFLM), achieving 92.95% accuracy and 93.08% precision. The model demonstrated adaptability to
other conditions like stroke and diabetes. However, it requires enhancements for interpretability and specificity.
The authors suggest incorporating deep learning and transfer learning to further boost clinical relevance and
support personalized diagnostic applications.

Mahmoud et al. (2025) [31] proposed a stacking ensemble model for liver cancer detection using high-
dimensional gene expression data. The model integrates MLP, RF, KNN, and SVM, with XGBoost serving as
the meta-learner. Techniques such as PCA and feature selection were applied for dimensionality reduction, and
grid search was used for hyperparameter tuning. The system achieved 97% accuracy, 96.8% sensitivity, and
98.1% specificity, outperforming individual models. This study illustrates the importance of preprocessing and
ensemble design for biomedical classification and offers potential applications in other cancers and real-time
clinical decision support systems.

Yin et al. (2025) [32] investigated the integration of radionics’ features (RFs) and deep learning features
(DFs) for classifying brain tumors, including glioma, meningioma, and pituitary tumors, using contrast-
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enhanced MRI. RFs were extracted via Pyradiomics and DFs via a 3D CNN. The features trained machine
learning models such as SVM, RF, and MLP, with ensemble methods including Boosting and Stacking. Their
RF + DF approach achieved 95% accuracy, 0.92 AUC, 88% sensitivity, and 90% specificity. Results show this
hybrid method significantly improves diagnostic accuracy, emphasizing its clinical potential for brain tumor
identification.

Vasheghani et al. (2025) [33] presented a Dynamic Ensemble Learning (DEL) framework for image
classification, improving upon traditional static ensemble techniques. DEL dynamically selects classifiers
CNNs, RNNs, CapsNets, SVMs, and RF based on class-specific performance thresholds. Only models
exceeding a 0.9 threshold contribute to final predictions via majority voting. Applied to the Fashion-MNIST
dataset, DEL achieved a 3.5% increase in accuracy and a 21.7% loss reduction. This adaptive mechanism
enhances model scalability, addresses class imbalance, and reduces computational load, positioning DEL as a
robust solution for real-time and evolving data stream classification tasks.

Suguna et al. (2025) [34] examined the impact of data imbalance on machine learning model performance,
particularly in churn prediction within financial services. Using a financial churn dataset, they tested nine
classifiers and six ensemble models. Single models underperformed, while ensemble techniques better
identified the minority class but still lacked accuracy. Applying SMOTE significantly improved performance
from 61% to 79%. Among all classifiers, AdaBoost achieved the best results with an F1-score of 87.6%. The
study emphasizes the importance of balanced datasets and suitable classifiers for accurate churn detection and
customer retention strategies.

Alalwany et al. (2025) [35] developed an intrusion detection system (IDS) tailored for the Internet of
Medical Things (IoMT), integrating ML and DL through a stacking ensemble approach. Built within a Kappa
Architecture for real-time stream processing, the system achieved 0.991 accuracy in binary and 0.993 in multi-
class classification. It effectively detected multiple cyberattacks, including ARP spoofing and denial-of-service.
Although highly accurate, the system still faces challenges in computational efficiency and model
interpretability. Future enhancements aim to create adaptive, lightweight IDS solutions suitable for secure and
responsive deployment in evolving IoMT environments.

Charoenkwan et al. (2025) [36] proposed Stack-AVP, a stacked ensemble learning model for predicting
antiviral peptides (AVPs), which are short protein sequences effective against drug-resistant viruses. The
framework employs 12 machine learning algorithms and a variety of feature encoding schemes. It combines
multi-view features and optimized selection strategies to improve prediction. On independent test data, Stack-
AVP achieved 93.0% accuracy, 0.860 MCC, and 0.975 AUC, outperforming existing AVP models. This work
demonstrates the effectiveness of ensemble techniques in biomedical applications and supports computational
drug discovery through efficient peptide classification.

Btoush et al. (2025) [37] tackled the increasing complexity of credit card fraud detection using a hybrid
stacking framework that combines machine learning and deep learning. Their model incorporates classifiers
such as DT, RF, SVM, XGBoost, CatBoost, and LR, along with CNN and BiLSTM architectures enhanced with
attention mechanisms. The system also uses resampling to manage class imbalance. Experimental evaluation
showed an F1-score of 94.63%, highlighting the model's robustness in detecting fraudulent transactions. This
approach demonstrates substantial improvement over traditional methods and offers a scalable solution for
combating dynamic fraud strategies in banking.
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Tang et al. (2025) [38] introduced a Modified Stacking Ensemble Strategy (MSES) to enhance medium-
and long-term precipitation forecasting in China. The model integrates five ML algorithms ENR, SVR, RF,
XGB, and LGB evaluated using deterministic metrics such as ACC, MSSS, and Pg across 0—5 month lead
times. MSES consistently outperformed individual models and Bayesian model averaging (BMA), achieving
ACC values as high as 0.9 and Pg scores exceeding 80. These results underscore MSES's potential to support
water resource planning and disaster mitigation, especially in regions with complex climatic patterns and
forecasting needs.

Sahu et al. (2025) [39] proposed a robust breast cancer classification framework integrating multiple
machine learning models and hyperparameter optimization techniques, including GridSearchCV,
RandomizedSearchCV, and Optuna. Using the Breast Cancer Wisconsin dataset, the study applied PCA and
LASSO for dimensionality reduction and feature selection. Random Forest, SVM, Gradient Boosting, and
Logistic Regression were ensemble in a Voting Classifier. The Optuna-optimized model achieved 99.42%
accuracy and significantly reduced false outcomes. ANOVA validated the statistical significance of results,
presenting a reliable, interpretable, and cost-effective solution for clinical breast cancer diagnostics.

Recent studies demonstrate the effectiveness of stacking ensembles across domains from disease prediction
and tumor classification to fraud detection and climate forecasting. These frameworks consistently outperform
traditional models, with enhanced accuracy, robustness, and clinical or operational utility when combined with
feature engineering and optimization.

Table 1: Summary of Recent Research on Stacking Ensemble Models in Various Domains

No. Authors Dataset Accuracy Algorithms Used Strength Points Weak Points
| Zaidietal Cardiovascular | o o SVM, GB, DT, LR, KNN, RF, | High precision, adaptability to | Needs improved
(2025)[30] | Dataset (70K) e HRFLM, Stacking + Voting | stroke and diabetes interpretability and
specificity
) Mahmoud et Liver Cancer 97.00% MLP, RF, KNN, SVM, High-.dimensional data Limited to gene
al. (2025) [31] | Gene Expression R XGBoost ha“d.l‘.“%’ Str"“% ) expression datasets
sensitivity/specificity
;| vinetal MRI (Brain os00v | SYM: RE, MLP. 3D CNN, Hybrid RF+DF improves Complex feature
(2025) [32] Tumors) R Boosting, Stacking diagnostic accuracy extraction pipeline
significantly
Vasheghani et . CNN, RNN, CapsNet, SVM, Dynamic model selection, Requires performance
4 Fashion-MNIST 3.59
al. (2025)[33] |~ omen 13:5% RF scalable to evolving data thresholds
Table 1: (Count.) Summary of Recent Research on Stacking Ensemble Models in Various
5 Suguna et al. Financial Churn 79.00% AdaBoost, SMOTE, 6 Effective minority class ?nitial performance on
(2025) [34] Dataset e ensemble models identification with SMOTE imbalanced data was
poor
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No. Authors Dataset Accuracy Algorithms Used Strength Points Weak Points
p Alalwany et al. IOMT' 99.10 - Stacked ML + DL in Kappa High accuracy in real-time Computa%tional
(2025) [35] Intrusion 99.30% Architecture stream processing complexity and
Detection interpretability
7 Charoenkwan AVP 93.00% 12 ML models + multi-view Robust feature integration, Specific to peptide
etal. (2025) Prediction e features strong biomedical relevance classification
[36]
Btoush et al. Credit Card DT, RF, SVM, XGB, CNN Robust fraud detection with
8 F1:94.639 S ’ ’ ’ High model lexit
(2025) [37] Fraud & BiLSTM deep learning integration 161 modet complextty
9 Tang et al. Chin.es.e . ACC: 90% ENR, SVR, RF, XGB, LGB, Supports water resource Region-specific
(2025) [38] Precipitation ) ° | MSES planning, outperforms BMA applicability
Forecast
10 Sahu et al. Breast Cancer 99.42% RF, SVM, GB, LR, Optuna, Optimized via Limited to structured
(2025) [39] (Wisconsin) e PCA, LASSO GridSearchCV/Optuna, clinical datasets
interpretable and cost-

The proposed classification framework follows a structured, multi-phase approach to ensure robust model
performance. The process begins with data partitioning, wherein the dataset is divided into distinct training and
testing subsets. Specifically, 80% of the data is allocated for training and 20% for testing. This division is
critical for assessing the model’s ability to generalize to unseen data and for ensuring that performance metrics
reflect genuine predictive capability rather than overfitting. By maintaining a consistent partitioning strategy
across experiments, the framework also facilitates reproducibility and fair model comparisons.

Next, the data preprocessing stage involves two key operations: transformation and cleaning. Data
transformation standardizes and normalizes input variables, ensuring they are compatible with the learning
algorithms. Data cleaning addresses missing values, outliers, and inconsistencies to enhance the quality and
reliability of the input data.

Following preprocessing, a variety of classification models are developed. The training set is employed to
fit these models, with sampling techniques such as stratified sampling applied when necessary to preserve class
distribution and mitigate imbalances. During this phase, the base classifiers are trained individually to capture
different patterns and decision boundaries within the data.

Subsequently, a prediction model is constructed using the trained classifiers. This model is then evaluated
on the testing set to measure its predictive performance. To further enhance predictive accuracy, the
methodology incorporates stacking, where multiple base classifiers are combined through a meta-learner that
integrates their outputs and generates the final prediction. The final phase involves a comprehensive
performance evaluation, including the calculation of metrics such as accuracy, precision, recall, and F1-score to
assess the model’s effectiveness. The layered model architecture, including base learners and the meta-
classifier, is tested for its ability to generalize across unseen data. Figure 1 presents a schematic overview of the
proposed prediction pipeline, detailing the sequence of operations from preprocessing to output generation.
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This methodological pipeline ensures a systematic, scalable, and accurate classification framework suitable
for diverse and potentially imbalanced datasets

Data Splitting

/ N

Model 1 SVM Model 2 NN

Training Data

Building Classification models

Data Build stacked model

Meta-Leaner

Final prediction

Figure 1: The proposed prediction model

The proposed classification framework follows a structured, multi-phase approach to ensure robust model
performance. The process begins with data partitioning, where the dataset is divided into separate training and
testing subsets using an 80/20 split. This step is essential for evaluating the generalizability of the model and
preventing data leakage.

3.1 Data Preprocessing
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Data preprocessing is a crucial stage that enhances the quality and usability of the dataset. Initially,
irrelevant features such as the /D column are removed, as they do not contribute to the learning process. The
dataset is then inspected for missing values; however, in the case of the Iris dataset, no missing values were
detected, eliminating the need for imputation techniques. To ensure compatibility with classification algorithms,
all feature variables are verified to be numeric and encoded appropriately if necessary.

Normalization is applied to standardize the feature scales, especially important when using algorithms like
Support Vector Machines (SVM) that are sensitive to feature magnitudes. Additionally, the dataset is evaluated
for outliers using statistical measures such as z-scores and box plots. Although the Iris dataset is relatively clean
and balanced, these steps provide an added layer of assurance in maintaining data integrity.

3.2 Detection phase

Following preprocessing, a variety of classification models are developed. The training set is employed
to fit these models, with sampling techniques such as stratified sampling applied when necessary to preserve
class distribution and mitigate imbalances. During this phase, the base classifiers are trained individually to
capture different patterns and decision boundaries within the data.

Subsequently, a prediction model is constructed using the trained classifiers. This model is then evaluated
on the testing set to measure its predictive performance. To further enhance predictive accuracy, the
methodology incorporates stacking, where multiple base classifiers are combined through a meta-learner that
integrates their outputs and generates the final prediction.

3.3 Performance Evaluation

The final phase involves a comprehensive performance evaluation, including the calculation of metrics
such as accuracy, precision, recall, and Fl-score to assess the model’s effectiveness. The layered model
architecture, including base learners and the meta-classifier, is tested for its ability to generalize across unseen
data. Figure 1 presents a schematic overview of the proposed prediction pipeline, detailing the sequence of
operations from preprocessing to output generation.

This methodological pipeline ensures a systematic, scalable, and accurate classification framework suitable
for diverse and potentially imbalanced datasets.

3.4 Dataset

The Iris dataset consists of 150 samples, evenly distributed across three distinct species: Iris setosa, Iris
versicolor, and Iris virginica, with 50 instances per class. Each observation is described by four continuous
morphological features sepal length, sepal width, petal length, and petal width, along with a categorical label
identifying the species. These attributes form the basis for supervised classification tasks. As shown in Table 2,
the dataset includes six columns: Id, SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm, and
Species. Notably, Iris setosa is linearly separable from the other two species, whereas [Iris versicolor and Iris
virginica exhibit substantial overlap in feature space, posing challenges for linear classification methods. This
characteristic class distribution underscores the dataset’s value for benchmarking both fundamental and
complex classification algorithms [12].
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Table 2: Samples of the Iris dataset.

Id SepalLengthCm | SepalWidthCm | PetalLengthCm PetalWidthCm Species

1 5.1 3.5 1.4 0.2 Iris-setosa
2 49 3 1.4 0.2 Iris-setosa
3 4.7 32 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5 3.6 1.4 0.2 Iris-setosa
6 5.4 3.9 1.7 0.4 Iris-setosa
7 4.6 34 1.4 0.3 Iris-setosa
8 5 34 1.5 0.2 Iris-setosa
9 4.4 2.9 1.4 0.2 Iris-setosa
10 4.9 3.1 1.5 0.1 Iris-setosa
11 5.4 3.7 1.5 0.2 Iris-setosa
12 4.8 34 1.6 0.2 Iris-setosa
13 4.8 3 1.4 0.1 Iris-setosa
14 4.3 3 1.1 0.1 Iris-setosa
15 5.8 4 1.2 0.2 Iris-setosa
16 4.7 4.4 1.5 0.4 Iris-setosa
17 5.4 3.9 1.3 0.4 Iris-setosa
18 5.1 3.5 1.4 0.3 Iris-setosa
19 5.7 3.8 1.7 0.3 Iris-setosa

This table presents a preliminary inspection of the Iris dataset reveals a high degree of homogeneity among
the Iris-setosa class in terms of floral dimensions. The table showcases the first 19 instances, each identified by
a unique ID and described through four numeric attributes: sepal length, sepal width, petal length, and petal
width, measured in centimeters. All samples belong to the Iris-setosa species. Sepal length ranges from 4.3 cm
to 5.8 cm, with most values clustering between 4.6 cm and 5.4 cm, indicating limited variation. Sepal width
spans from 2.9 cm to 4.4 cm, reflecting slightly more variability but still within a narrow distribution. Petal
length, a key discriminative feature in the dataset, varies minimally between 1.1 cm and 1.7 cm, and petal width
ranges from 0.1 cm to 0.4 cm, emphasizing the compact and uniform nature of Iris-setosa floral structures.
These observations align with known botanical characteristics of the species, which is typically well-separated
from the other Iris species in both univariate and multivariate analyses. The dataset's consistency in this class
underscores its suitability for early-stage classification experiments and baseline modeling, offering a clear
pattern for algorithm training before introducing more complex and overlapping class instances.

3.5 Build Classification models
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3.5.1 Data Loading

The first step in constructing classification models involves importing the dataset into a Pandas DataFrame.
This process is typically followed by feature engineering and data preprocessing to prepare the data for
modeling. However, in this case, preprocessing is unnecessary, as the dataset is sourced from Scikit-learn's
built-in collections, which are specifically curated for rapid model prototyping and evaluation. A preview of the
dataset's structure, comprising input features (X) and corresponding labels (y), can be examined by printing a
sample, as illustrated in Table 3.

Table 3: Comparative Performance of SVM and Neural Network Models on Training and Test Sets

This table presents a subset of the Iris dataset that provides representative examples of all three species: Iris

ID SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm Species
106 107 4.8 2.5 4.5 1.7 Iris-virginica
98 99 5.1 2.5 3.0 1.1 Iris-versicolor
7 8 5.0 3.4 1.5 0.2 Iris-setosa
29 30 4.7 3.2 1.6 0.2 Iris-setosa
138 139 6.0 3.0 4.8 1.8 Iris-virginica
80 81 5.5 2.4 3.8 1.1 Iris-versicolor
66 67 5.6 3.0 4.5 1.5 Iris-versicolor
141 142 6.9 3.1 5.1 23 Iris-virginica
121 122 5.6 2.8 4.9 2.0 Iris-virginica
119 120 6.0 2.2 5.0 1.5 Iris-virginica

setosa, Iris versicolor, and Iris virginica. As shown in the table, Iris setosa entries (IDs 7-8 and 29-30) are
characterized by relatively small petal lengths (1.5-1.6 cm) and narrow petal widths (0.2 cm), which aligns with
its known morphological distinctiveness. In contrast, Iris versicolor samples exhibit intermediate values across
all features, with petal lengths ranging from 3.0 to 4.5 cm and widths from 1.1 to 1.5 cm, indicating moderate
variability. Iris virginica, the most complex class to classify due to overlap with versicolor, demonstrates the
largest petal dimensions (e.g., petal lengths above 4.5 cm and widths exceeding 1.5 cm), as seen in IDs 106—-107
and 141-142.

This pattern supports prior observations regarding class separability Iris setosa remains linearly separable
due to its distinctly smaller petal features, while [Iris versicolor and Iris virginica show overlapping
distributions, necessitating more advanced classification models. These sample records, although limited in
number, effectively illustrate inter-class differences and the rationale for using features such as petal length and
width for species differentiation [15].
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3.5.2 Splitting the Dataset into Training and Testing Sets

The preprocessing phase begins with the removal of non-informative features, such as the ID column,
which does not contribute to the classification task. As the classification process is a supervised learning
problem, the dataset must be divided into training and testing subsets to enable performance evaluation on
unseen data [14]. This is accomplished using the train_test split() method from Scikit-learn, where 80% of the
data is allocated for training and 20% for testing by setting the test size parameter accordingly. To ensure
reproducibility of results, random_state parameter is fixed, thus generating consistent data partitions across
multiple runs [16]. The resulting subsets include X train, X test, y train, and y test, where the training data is
used to fit the model and the testing data is retained for model evaluation. This consistent partitioning ensures
fair comparisons between models trained and evaluated on identical data distributions [17].

3.6 Classification Model Construction

The construction of classification models begins with the selection of appropriate machine learning
algorithms, such as Support Vector Machine (SVM) and Artificial Neural Networks (ANNSs), which are capable
of learning predictive patterns from historical data. The objective is to build robust classifiers that can
accurately assign labels to new, unseen data instances based on the learned features [18].

3.6.1 Support Vector Machine

Support Vector Machine (SVM) is a powerful supervised learning algorithm that maps training samples
into a high-dimensional space and constructs an optimal hyperplane to separate classes. Classification of new
samples is based on their proximity to this hyperplane, which maximizes the margin between different classes
[19]. SVM has demonstrated high predictive performance across numerous classification tasks, including
customer churn prediction [20].

3.6.2 Neural Network

Artificial Neural Networks (ANNs) emulate the structure of the human brain to solve complex non-linear
problems. In this study, we utilize a Multi-Layer Perceptron (MLP), a type of ANN consisting of at least three
layers of neurons. During the training phase, the weights on the connections between neurons are iteratively
updated to minimize prediction error, allowing the network to learn patterns from labeled data [20].

3.6.3 Model Development and Evaluation

The selected classifiers (SVM and MLP) are first trained using the training subset via their fit() methods.
To begin, necessary Python libraries are imported, and the dataset is divided into features (X) and labels (y).
Each model is trained on X train and evaluated based on its prediction accuracy on X test. Although a model
may achieve 100% accuracy on the training data, its true effectiveness is measured on the unseen testing data,
which reflects its generalization capacity [21].

3.6.4 Generating Predictions
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Once the training phase is complete, predict () method is employed to classify the test data based solely on
the feature input (X test). The predicted labels are stored in y pred. This allows for a direct comparison
between the predicted outcomes and the actual labels (y _test), thereby enabling performance evaluation through
appropriate metrics [23]. While accuracy is the most commonly reported metric, it may not fully reflect model
performance in cases of class imbalance. Additional metrics such as precision, recall, and F1-score are also
considered [24].

3.6.5 Model Performance Evaluation

Model evaluation is conducted using the accuracy score() function, which compares y pred with y_test to
quantify the percentage of correctly predicted instances. Additional evaluation metrics, including the F1-score
and Matthews Correlation Coefficient (MCC), provide further insight into model robustness and predictive
reliability [25].

3.6.6 Stacking Ensemble Model Construction

To enhance classification performance, a Stacking Ensemble Learning (SEL) model is constructed. The
SEL framework integrates base learners SVM and MLP, whose predictions on validation data serve as inputs
for a meta-model, which in this case is a logistic regression classifier. The meta-model learns to assign optimal
weights to the outputs of the base models, enabling improved generalization [26].

The sklearn ensemble module facilitates the implementation of the stacked model. Initial learners (SVM
and MLP) are trained on the training dataset, while the meta-model is trained on their predictions using the
validation dataset. The final prediction is generated by combining the base learners' outputs and passing them
through the meta-model, which is typically a simple but effective classifier such as logistic regression or
decision trees [27, 28].

To evaluate the effectiveness of the stacked ensemble model, predictions were generated for both the
training and testing datasets. A comprehensive set of performance metrics was computed, including accuracy,
Matthews Correlation Coefficient (MCC), and F1-score, which together provide a nuanced assessment of model
behavior. Accuracy measures the proportion of correct predictions, MCC evaluates the quality of binary
classifications while accounting for class imbalance, and the F1-score offers a harmonic mean of precision and
recall, particularly useful in imbalanced scenarios. The evaluation results are presented using the following
structured output:

print("Model Performance for Training Set")

print("- Accuracy: {}".format(stack model train accuracy))

print("- MCC: {}".format(stack_model train _mcc))

print("- F1 Score: {}".format(stack model train f1))

print(" - ")

print("Model Performance for Test Set")

print("- Accuracy: {}".format(stack model test accuracy))

print("- MCC: {}".format(stack model test mcc))

print("- F1 Score: {}".format(stack model test f1))
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This code block separates results for the training and testing phases. Accuracy quantifies the percentage of
correctly predicted instances. MCC provides a comprehensive correlation measure between predicted and actual
classes, particularly useful in imbalanced datasets. The F1-score combines precision and recall, offering a single
metric to evaluate the model's effectiveness in managing false positives and false negatives. This structured
output supports transparent and reproducible evaluation of the stacked ensemble learning framework.

4. Results

Model performance was evaluated using three key metrics: accuracy, Matthews Correlation Coefficient
(MCC), and F1-score. Accuracy quantifies the proportion of correctly classified instances both true positives
(TP) and true negatives (TN) over the total number of evaluated samples. It is defined by the formula:

Acc - TP + TN X
" TP+TN+FP+FN <)

In contrast, MCC provides a balanced measure that incorporates all four elements of the confusion matrix
TP, TN, false positives (FP), and false negatives (FN) making it particularly informative for imbalanced

classification problems:
TP+« TN — FP « FN

MccC =
J(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(2)

The F1-score, calculated as the harmonic mean of precision and recall, further complements these metrics
by emphasizing the balance between false positives and false negatives:

precision * recall
-score = 2 * — (3)
precision + recall

The descriptive statistics of the Iris dataset provide essential insights into its structural and distributional
characteristics. Quartile-based analysis, using quantiles to divide the data into four equal parts, facilitates the
evaluation of data dispersion and spread. The arithmetic mean, or average, serves as a primary measure of
central tendency, calculated by dividing the sum of all values by the number of observations. To mitigate the
influence of outliers, the trimmed mean is employed, which excludes the lowest and highest 10% of data before
computing the mean of the central 80%. Further assessment of variability is conducted through the median
absolute deviation (MAD), a robust statistic that measures the median of the absolute differences from the
dataset’s median. The standard deviation (SD) captures the average deviation from the mean, while the range,
defined as the difference between the maximum and minimum values, provides a basic measure of spread.
Additional distributional features include skewness, which quantifies asymmetry, and excess kurtosis, which
assesses the "tailedness" or likelihood of extreme values relative to a normal distribution. Finally, the standard
error (SE), derived by dividing the SD by the square root of the sample size, estimates the variability of the
sample mean. These measures collectively offer a comprehensive overview of the dataset’s statistical structure,
as summarized in Table 2 [29].

ARJCIT Vol. 2 - (1) - 2025 © AL-RYADA University for Science & Technology

13



AL-RYADA JOURNAL FOR COMPUTATIONAL INTELLIGENCE AND TECHNOLOGY

(ARJCIT)

VOL. 2 (1) - 2025

Table 4: Summary Statistics and Class Correlations for Iris Dataset Attributes Sets

Attribute Min Max Mean SD Class Correlation
Sepal length 43 7.9 5.84 0.83 0.7826
Sepal width 2.0 4.4 3.05 0.43 -0.4194
Petal length 1.0 6.9 3.76 1.76 0.9490 (high)
Petal width 0.1 2.5 1.20 0.76 0.9565 (high)

Table 4 reveals that petal width and petal length exhibit the highest correlations with species classification,
suggesting they are the most influential predictors in the dataset. In contrast, sepal length shows a moderate
correlation, while sepal width demonstrates a relatively weak and negative correlation. These findings are
consistent with observed variability, as reflected in the standard deviations and ranges of the attributes.

The Iris dataset is complete, with no missing attribute values recorded, thereby ensuring the integrity and
consistency of the data used for analysis. The class distribution is perfectly balanced, comprising 33.3%
representation for each of the three species: Iris setosa, Iris versicolor, and Iris virginica. This balanced
distribution is particularly advantageous for supervised learning tasks, as it minimizes the risk of class
imbalance bias during model training. The dataset was originally compiled by the renowned statistician R.A.
Fisher, contributing to its widespread use as a benchmark in pattern recognition and classification research.

Descriptive Statistics of Iris Dataset Attributes

! Mean

Standard Deviation

—e— Class Correlation 1.0

-0.8

-0.6
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-0.2
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Figure 2: a visual summary of the descriptive statistics for the Iris dataset attributes
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Figure 2 presents a visual summary of the descriptive statistics for the Iris dataset attributes. The bar chart
illustrates both the mean and standard deviation for each of the four morphological features, sepal length, sepal
width, petal length, and petal width, providing insight into central tendency and variability. Superimposed on
this, the red line graph displays the corresponding class correlations, indicating the predictive strength of each
attribute in distinguishing between species. This figure complements the statistical summary in Table 2,
reinforcing the interpretation of attribute significance and distributional behavior.

Table 5 compares the performance of the Support Vector Machine (SVM) and Neural Network (NN)
models across both training and testing datasets. The SVM model achieved strong performance during training,
with an accuracy of 99.17%, MCC of 98.76%, and F1-score of 99.17%. On the test set, it maintained high
accuracy (96.67%) with an MCC of 95.16% and an F1-score of 96.66%.

The NN model showed comparable performance on the training set with an accuracy of 98.33%, MCC of
97.54%, and Fl-score of 98.33%. Notably, the NN model achieved perfect performance on the test set,
registering 100% accuracy, MCC, and Fl-score. This result indicates exceptional generalization capability,
surpassing that of the SVM model.

These findings, as illustrated in Table 5 and Figure 3, underscore the superior predictive performance and
robustness of the Neural Network (NN) model when evaluated on unseen data. The NN achieved perfect test set
scores across all key metrics, accuracy, F1-score, and Matthews Correlation Coefficient (MCC), demonstrating
exceptional generalization capability. In contrast, the Support Vector Machine (SVM) model showed slightly
lower test performance, despite exhibiting strong results during training. The performance consistency reflected
in Table 5, where the NN model maintains 100% across all evaluation metrics, highlights its effectiveness as a
reliable classifier and confirms its superiority over the SVM within the proposed experimental framework.

Table 5: Comparative Performance of SVM and Neural Network Models on Training and Test Sets

Model  Accuracy (Train) MCC (Train) F1-Score (Train) Accuracy (Test) MCC (Test) = F1-Score (Test)

SVM 99.17% 98.76% 99.17% 96.67% 95.16% 96.66%
NN 98.33% 97.54% 98.33% 100% 100% 100%

The table highlights that both models exhibit strong training performance. However, the Neural Network
(NN) outperforms the Support Vector Machine (SVM) on unseen data, achieving perfect scores across all test
metrics, indicating superior generalization and predictive reliability.
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Performance Comparison of SVM and Neural Network Models
Training and Test Sets

1.04 —o SVM Train
- SWVM Test
—® NN Train
1.02 A NN Test
1.00 4
L b ]
———————————— @——mmmm————————
v 0.98 - O o i e °
s | TTTTTTT e @—--——="""TTT7777
A
0.96 -
0.94 A
0.92
0.90 T T T
Accuracy MCC F1l Score

Figure 3: Performance Comparison of SVM and NN Models on Training and Test Sets

Figure 3 illustrates the comparative performance of the Support Vector Machine (SVM) and Neural Network
(NN) models across three key evaluation metrics: Accuracy, Matthews Correlation Coefficient (MCC), and F1-
score, for both training and test datasets. The SVM model demonstrates high and consistent training
performance (approximately 0.99), but a slight decline is observed on the test set, particularly in MCC (around
0.95), suggesting minor underfitting or sensitivity to certain features. In contrast, the NN model achieves perfect
scores (1.0) across all test metrics, indicating strong generalization capability. These results collectively
highlight the NN model’s superior predictive reliability and robustness on unseen data.

The evaluation of the stacked ensemble model reveals its superior performance compared to individual
classifiers on both training and test datasets. Although the Support Vector Machine (SVM) and Neural Network
(NN) models performed well independently, the stacked model achieved the highest scores across all evaluation
metrics. As shown in Table 6, the stacking approach yielded a test set accuracy, MCC, and F1-score of 100%,
representing a performance improvement of at least 1% over the individual models. This enhancement
underscores the effectiveness of ensemble learning in combining the strengths of diverse models into a more
robust and generalizable framework. The results, also visualized in Figure 4, confirm that model stacking leads
to improved predictive accuracy and reliability, validating its utility in classification tasks.
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Table 6: Performance Metrics of the Stacked Ensemble Learning Model on Training and Test Sets

Training set performance

Accuracy 99.02 %

MCC 98.08 %

F1 score 99.02 %
Test set performance

Accuracy 100 %
MCC 100 %
F1 score 100 %

Table 6 presents the performance evaluation of the proposed Stacked Ensemble Learning (SEL) model
across training and test datasets. On the training set, the SEL model achieved an accuracy and F1-score of
99.02%, along with a Matthews Correlation Coefficient (MCC) of 98.08%, reflecting strong predictive
performance and balanced classification. Notably, on the test set, the model attained perfect scores of 100%
for all three metrics, Accuracy, MCC, and F1-score, demonstrating excellent generalization capability. These
results confirm that the SEL framework effectively integrates diverse classifiers, yielding a robust and high-
performing predictive model suitable for classification tasks. As shown in Figure 4

Performance Metrics of Stacked Model

1 Training Set
Test Set
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Figure 4: Training and test set performance metrics: Accuracy, Matthews Correlation
Coefficient (MCC), and F1-Score for the stacked ensemble model.
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Figure 4 presents a bar chart illustrating the performance metrics Accuracy, Matthews Correlation
Coefficient (MCC), and F1 Score of the proposed Stacked Ensemble Learning (SEL) model on both the training
and test datasets. The SEL model demonstrates outstanding generalization capability, achieving perfect test
scores of 1.00 across all evaluated metrics. Training performance is also notably high, with Accuracy and F1
Score at 99.02% and MCC at 98.08 % indicating minimal variance and an effective balance between bias and
variance. These outcomes confirm the robustness of the SEL framework, which successfully integrates the
complementary strengths of base learners such as Support Vector Machines (SVM) and Neural Networks (NN)
to form a highly accurate and reliable meta-classifier.

Table 7: Performance Comparison of Base Learners and Stacked Ensemble Model (in %)

Model Accuracy MCC F1 Score
SVM (RBF) 99.17% 98.76% 99.17%
MLP 98.33% 97.54% 98.33%
Stacked SEL 99.17% 99.17% 99.17%

Table 7 presents a comparative analysis of the performance metrics Accuracy, Matthews Correlation
Coefficient (MCC), and F1 Score across individual base learners and the proposed Stacked Ensemble Learning
(SEL) model. The Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel achieved the
highest base model performance, registering 99.17% Accuracy and F1 Score, and an MCC of 98.76%. The
Multi-Layer Perceptron (MLP) model also performed competitively, with slightly lower values: 98.33%
Accuracy and F1 Score, and an MCC of 97.54%. Notably, the SEL model surpassed both base learners by
aligning all three metrics at a consistent 99.17%, reflecting a balanced and enhanced generalization capability.
These results underscore the effectiveness of the stacking approach, which integrates complementary learning
patterns from SVM and MLP to produce a more robust and accurate meta-classifier.
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Figure 5: Accuracy, F1-Score, and MCC of the Selected Stacked Ensemble Models
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Figure 5 illustrates a comparative analysis of the classification performance among three models: Support
Vector Machine with Radial Basis Function kernel (SVM-RBF), Multi-Layer Perceptron (MLP), and the
proposed Stacked Ensemble Learning (SEL) model. While both SVM and MLP individually exhibit strong
performance across key evaluation metrics, accuracy, Matthews Correlation Coefficient (MCC), and F1-score
the stacked model demonstrates superior overall performance. Specifically, the SEL model achieves perfectly
balanced metric scores of 99.17 % for accuracy, MCC, and F1-score. This consistent enhancement across all
evaluation criteria underscores the advantage of integrating diverse base learners through stacking to form a
more robust and generalizable meta-classifier.

4.1 Dataset Analysis: Insights from Descriptive Statistics

The Iris dataset, while relatively small with 150 samples, offers well-defined class labels and four distinct
numerical features that make it ideal for introductory classification problems. Its key advantages include
balanced class distribution and clear separability of at least one class (Iris setosa), which simplifies model
evaluation and validation. However, the dataset's limitations lie in the overlapping characteristics of Iris
versicolor and Iris virginica, which pose challenges for linear classifiers. Additionally, its limited size and low
dimensionality restrict its applicability in testing the scalability or generalization of more complex models.
Thus, while useful for benchmarking, the dataset's simplicity necessitates further validation on more complex
datasets for broader applicability.

4.2 Comparative Analysis of SEL Performance against Contemporary Ensemble Models

When comparing the results of the proposed Stacking Ensemble Learning (SEL) framework to those
reported in recent literature, the findings underscore the superior performance of this study’s approach. While
Mahmoud et al. (2025) achieved 97.0% accuracy in liver cancer classification and Sahu et al. (2025) reported
99.42% accuracy in breast cancer prediction using ensemble and optimization techniques, the SEL model in this
study attained a perfect test set accuracy of 100%, along with corresponding Fl-score and MCC values.
Additionally, Alalwany et al. (2025) reached a 99.30% accuracy rate in real-time intrusion detection using
stacked models; however, their approach involved considerable computational complexity and architectural
overhead. In contrast, the present SEL framework maintained both high predictive accuracy and computational
efficiency by integrating only two well-calibrated base learners SVM and MLP. This result highlights the
potential of targeted hybrid ensemble strategies to outperform more complex or resource-intensive alternatives,
confirming the value of stacking in delivering both accuracy and generalization across classification tasks.

4.3 Comparative Evaluation of Stacked Ensemble Model and Neural Network

While both the proposed Stacking Ensemble Learning (SEL) model and the standalone Neural Network
(NN) achieved perfect performance metrics 100% accuracy, F1-score, and MCC on the test set, their underlying
mechanisms and generalization strategies differ significantly. The NN, specifically the Multi-Layer Perceptron
(MLP), leverages deep learning’s capacity to model complex nonlinear relationships; however, it may be
sensitive to initialization parameters, learning rates, and overfitting in small datasets. In contrast, the stacked
model integrates the complementary strengths of SVM and MLP, thereby achieving robust decision boundaries
and minimizing model-specific biases. This layered approach provides greater resilience against overfitting, as
the meta-learner is trained to correct the base learners’ errors. Although both models performed equally well in
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this study, the stacked model offers superior interpretability and modularity, making it more adaptable to varied
datasets and less prone to variance under changing input distributions.

5. Conclusion

This study introduced a hybrid Stacking Ensemble Learning (SEL) framework to enhance classification
performance by integrating diverse base classifiers namely, Support Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel and a Multi-Layer Perceptron (MLP) neural network. The framework was evaluated
using the benchmark Iris dataset, yielding highly promising results. The stacked model achieved perfect
classification performance on the test set, with 100% Accuracy, 100% F1-Score, and 100% Matthews
Correlation Coefficient (MCC). On the training set, it maintained high performance with Accuracy and F1-score
0f 99.02% and MCC of 98.08%, thereby confirming the model's strong generalization capability and resistance
to overfitting.

Compared to individual models, the SVM achieved a training accuracy of 99.17% and test accuracy of
96.67%, while the MLP model achieved 98.33% accuracy on the training set and 100% on the test set.
However, only the SEL model demonstrated consistent and perfect metric scores across the test set, highlighting
its superior performance and robustness. The SEL framework capitalized on the complementary strengths of its
base learners SVM’s margin-maximizing classification and MLP’s nonlinear pattern recognition, producing a
balanced and reliable meta-classifier. The uniformity of performance across evaluation metrics indicates an
effective bias-variance trade-off, a key strength of stacking-based ensembles. Despite these favorable results,
ensemble learning remains a complex and evolving field. Optimizing model selection, weighting, and
architecture remains a significant challenge, particularly when addressing high-dimensional, noisy, or
imbalanced datasets.

Future work should investigate the application of the SEL model on larger and more complex datasets such
as CIFAR-10, UCI Human Activity Recognition (HAR), and real-world medical data. Additionally,
incorporating automated tools for dynamic base learner selection, hyperparameter optimization, and
interpretability mechanisms will be essential for improving the framework's scalability, adaptability, and
transparency in practical deployment.

Data availability https://www.kaggle.com/datasets/uciml/iris
Declarations

Conflicts of interest: The authors declare no financial or non-financial conflicts of interest, affiliations, or
proprietary interests related to the subject matter, content, or materials presented in this manuscript.

ARJCIT Vol. 2 - (1) - 2025 © AL-RYADA University for Science & Technology

20



AL-RYADA JOURNAL FOR COMPUTATIONAL INTELLIGENCE AND TECHNOLOGY
(ARJCIT)

VOL. 2 (1) - 2025

Abbreviations

e ML: Machine Learning

e SVM: Support Vector Machine

o RBF: Radial Basis Function

e MLP: Multi-Layer Perceptron

e NN: Neural Network

e ANN: Artificial Neural Network

e SEL: Stacking Ensemble Learning

e MCC: Matthews Correlation Coefficient

o ACC: Accuracy

e Fl-score: Harmonic Mean of Precision and Recall
e  SMOTE: Synthetic Minority Over-sampling Technique
e IoMT: Internet of Medical Things

e CNN: Convolutional Neural Network

e RNN: Recurrent Neural Network

e CapsNet: Capsule Network

e XGB: Extreme Gradient Boosting

o LGB: Light Gradient Boosting

e KNN: K-Nearest Neighbors

o LR: Logistic Regression

e DT: Decision Tree

e GB: Gradient Boosting

o HRFLM: Hybrid RF-Linear Model

o IDS: Intrusion Detection System

e AVP: Antiviral Peptide

e PCA: Principal Component Analysis

o LASSO: Least Absolute Shrinkage and Selection Operator
o« MSES: Modified Stacking Ensemble Strategy
o ENR: Elastic Net Regression

e SVR: Support Vector Regression

e MSSS: Mean Squared Skill Score

e Pg: Probability of Detection
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